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Abstract

Since early March 2020, government agencies have utilized a wide variety of non-pharma-

ceutical interventions to mitigate the spread of COVID-19 and have struggled to determine

when it is appropriate to return to in-person activities after an outbreak is detected. At many

universities, fundamental issues related to understanding the spread of the disease (e.g. the

transmission rate), the ability of administrators to respond quickly enough by closing when

there is a sudden rise in cases, and how to make a decision on when to reopen remains a

concern. Surveillance testing strategies have been implemented in some places, and those

test outcomes have dictated whether to reopen, to simultaneously monitor community

spread, and/or to isolate discovered cases. However, the question remains as to when it is

safe to reopen and how much testing is required to remain safely open while keeping infec-

tion numbers low. Here, we propose an extension of the classic SIR model to investigate

reopening strategies for a fixed testing strategy, based on feedback from testing results.

Specifically, we close when a predefined proportion of the population becomes infected,

and later reopen when that infected proportion decreases below a predefined threshold. A

valuable outcome of our approach is that our reopening strategies are robust to variation in

almost all model parameters, including transmission rates, which can be extremely difficult

to determine as they typically differ between variants, location, vaccination status, etc.

Thus, these strategies can be, in theory, translated over to new variants in different regions

of the world. Examples of robust feedback strategies for high disease transmission and a

fixed testing capacity include (1) a single long lock down followed by a single long in-person

period, and (2) multiple shorter lock downs followed by multiple shorter in-person periods.

The utility of this approach of having multiple strategies is that administrators of universities,

schools, business, etc. can use a strategy that is best adapted for their own functionality.
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1 Introduction

Coronavirus is the name given to a family of viruses with a characteristic spiked protein pro-

trusion structure that resembles the solar corona [1]. In late 2019, a novel coronavirus named

“severe acute respiratory syndrome coronavirus-2” (SARS-CoV-2), which causes the disease

COVID-19, emerged in humans in Wuhan city, Hubei province, China [2]. Although its exact

origins are unknown, evidence suggests that COVID-19 originated from zoonotic transfer via

bats or pangolins with natural selection occurring either pre or post zoonotic transfer [3]. On

March 11, 2020 the World Health Organization declared COVID-19 a global pandemic [4],

where reports on death reached near 4 million worldwide by summer 2021 [5], and current (as

of 05/2022) World Health Organization estimates suggest a total mortality of nearly 15 million

[6]. With variants of the disease continuing to emerge, it is likely that the disease will persist

into the foreseeable future, and models for understanding how to manage its spread are

crucial.

Transmission of COVID-19 occurs in one of three ways: direct contact transmission, aero-

sol transmission, and droplet transmission [7]. Starting early in the COVID-19 pandemic, mit-

igation strategies such as masking, social distancing, lockdowns, and random testing were and

are still being utilized to stop or slow down transmission of the disease [2, 8–10]. While vac-

cines with high efficacy have been developed, and have been shown to slow the virus spread

[11], social behaviour and variant transmission have proven to be competing drivers of the

virus, with newer variants such as “Delta” and “Omicron” spreading quickly through popula-

tions, especially those populations with low vaccination numbers [12]. In addition, children

under 5, who are not cleared for vaccination in most of the world, and those vaccinated early

on in the pandemic, are still transmitting the disease which has initiated new “booster” pro-

grams [13].

Previous models of COVID-19 spread have analyzed the dynamics of disease spread with

the adherence and non-adherence of social behavior protocols such as masking, social distanc-

ing, and the enforcement of closures/lock downs [14–23]. To our knowledge, few models have

incorporated the effect of randomized daily testing (although many universities have used this

strategy to mitigate disease spread [24–26]) with the goal of maximizing in-person time utiliz-

ing feedback mechanisms while maintaining a low number of infections. This will be the focus

of this work.

Here, we explore the dynamics of COVID-19 spread in a “closed” (e.g. self-contained) envi-

ronment that incorporates testing, closures (i.e. lockdowns), and reopening. Examples of this

type of system are universities with residential campuses that can be approximated as closed

environments. The overall goal of this study is to provide insight to administrators interested

in developing safe and effective reopening plans, based on our analyzed closure/reopen strate-

gies, where we maximize the total in-person days while keeping infection numbers low. We do

not explicitly take vaccination into account, as we assume all individuals in the system have the

same vaccination status, which is a strategy taken by many US residential universities that

require proof of vaccination upon arrival [27]. As we are interested in relatively short time

frames (on the order of a single semester), we do not consider deferentially “boosted” popula-

tion compartments, as this percentage of individuals is generally expected to be small. Further-

more, in environments with different vaccination requirements, model parameters can be re-

calibrated, but our general modeling framework of a homogeneous population is valid. In

addition, it has been shown that many vaccinated people can still contract and transmit certain

variants of COVID-19 [13, 28].

We develop our model using an ordinary differential equation (ODE) modeling approach,

based on extensions of the original Susceptible-Infected-Removed (SIR) model system
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developed by Kermack and McKendrick in 1927 [29]. The original SIR model includes com-

partments for susceptible individuals (S), infectious individuals (I), and those that have recov-

ered or deceased (R). We extend this model and separate our infectious class into two

categories: those that are asymptomatic but infectious (I1) and those that are symptomatic and

infectious (I2). Note that we distinguish between these two classes since individuals who expe-

rience symptoms are more likely to practice social distancing and mask wearing, as well as

avoid in-persons gatherings/classes. In addition to considering asymptomatic and symptom-

atic individuals, we also differentiate asymptomatic individuals into two sub-compartments:

those that are unaware that they have contracted COVID-19 (Iu
1
), and those that are aware via

a positive test result (Ia
1
).

In Section 2, we describe the model and its underlying assumptions in detail, as well as pro-

vide ranges for all model parameters. In addition, we provide an expression for the models

basic reproductive number R0, based on a standard derivation of the model’s next generation

matrix [30, 31], which we use to explore the dynamics of the model and to determine plausible

values for the disease transmission rate. In Section 3, we explore the model behavior with

respect to varying the reopening strategy. We keep the testing strategy fixed (exploring both a

low and high testing rate), keep the closing criterion fixed, and identify optimal reopening

strategies where reopening occurs when the percentage of the population remaining infected

drops below a defined threshold (we vary this percentage between 0 and 5%).

2 Mathematical model

Here, we introduce our ODE model of COVID-19 spread through a susceptible population,

where initially a small percentage of the population is COVID-19 positive. This can be repre-

sentative of a student body returning to campus after a break. Our model, described by Eqs (2)

through (6), includes the following dependent variables: a susceptible population S, asymp-

tomatic populations I1, which are separated into two classes, representing those that are aware

that they have COVID-19 Ia
1
, those that are unaware Iu

1
, symptomatic infectious individuals I2,

and individuals that are recovered/removed from the population R. Since we are considering a

population of college students, we assume that removed individuals have recovered from the

disease. We summarize how these populations interact with each other with a compartmental

schematic of our model shown in Fig 1.

The schematic shows that susceptible individuals (S) become infected at a (transmission)

rate vr, and are initially unaware they have COVID-19 (Iu
1
). Either an individual becomes

aware (Ia
1
) that they have COVID-19 through testing (here tr(t) is the number of individuals

tested per day and f is the fraction of true positive tests), or by becoming symptomatic (I2).

Those individuals that show symptoms are considered COVID positive, and are required to

quarantine until recovered. Individuals can recover (R) from either a symptomatic or asymp-

tomatic state. Next, we describe the assumptions for which our model is developed.

2.1 Modeling assumptions

1. The rate of disease transmission, vr, depends on the number of contacts between a single

susceptible individual and contagious asymptomatic infected individuals that are unaware

they have COVID-19. This assumption is justified if we assume that people stick to the

COVID-19 protocols strongly, and quarantine if they are aware they are infected through

testing, or if they have symptoms.

2. We assume that the disease transmission rate vr is primarily dependent on the number of

close contacts (i.e., class sizes and number of individuals sharing a living space). Small
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numbers of students in a class lead to small transmission rates and larger numbers of stu-

dents lead to larger transmission rates.

3. We assume testing is randomly performed (e.g. not targeted or performed via contact trac-

ing) on the susceptible and asymptomatic infectious populations. Here tr(t) denotes the

proportion of people tested (each day), and must generally be time-dependent, since we

cannot test more than the total testable population Iu
1
þ S at any time t. We assume a con-

stant testing capacity Tr, so that

trðtÞ ¼ minfTr; Iu1ðtÞ þ SðtÞg: ð1Þ

Intuitively, we test a constant tr(t) = Tr individuals per day, unless the testable population

falls below Tr.

4. Testing is not perfectly accurate, which must be accounted for in our modeling framework.

Parameter f represents the conditional probability of testing positive, given that the individ-

ual is infected.

Fig 1. Compartmental diagram representing the transitions between different states in our model. Here, vr describes the rate of acquiring COVID-

19 (after an encounter with asymptomatic infectious individuals), tr(t) corresponds to the fraction of the population tested per day, where the parameter

f is included to account for the fraction of true positive test results. The parameter β1 corresponds to the rate at which asymptomatic infectious

individuals become symptomatic, β2 corresponds to the rate at which symptomatic individuals recover, and β3 corresponds to rate at which

asymptomatic individuals recover (those that never become symptomatic). The “tildes” over β1 and β3 allow for the possibility of an increased rate of

symptom development and recovery in Ia
1

individuals compared to Iu
1

individuals, simply because they are, on average, further along their disease

progression having already spent time in the Iu
1

compartment.

https://doi.org/10.1371/journal.pone.0274407.g001
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5. The rate of transition between the asymptomatic and symptomatic states depends on test-

ing, such that ~b1 � b1. This accounts for the time lapse between getting infected and getting

a positive test. Here we assume this time is negligible, so we set these values equal to each

other.

6. In a similar light, the rate of transition between the asymptomatic and recovered states

depends on testing, such that ~b3 � b3.

7. Once infected individuals become aware that they are COVID-19 positive, they no longer

infect susceptible individuals (i.e. they are quarantined).

8. We assume that recovered individuals are no longer infective or susceptible for the time

scales considered in this work (generally a few months) [32].

2.2 The model equations

Eqs (2) through (6) describe the dynamics of COVID-19 through an initially susceptible popu-

lation in the presence of testing. A small number of unaware infected individuals will be intro-

duced into the system, as described by the initial condition for Iu
1
ð0Þ.

dS
dt
¼ � vr

Iu
1

Iu
1
þ S

� �

S ð2Þ

dIu
1

dt
¼ vr

Iu
1

Iu
1
þ S

� �

S � trðtÞf
Iu

1

Iu
1
þ S

� �

� ðb1 þ b3ÞIu1 ð3Þ

dIa
1

dt
¼ trðtÞf

Iu
1

Iu
1
þ S

� �

� ð~b1 þ
~b3ÞIa1 ð4Þ

dI2

dt
¼ b1Iu1 þ ~b1Ia1 � b2I2

ð5Þ

dR
dt
¼ b2I2 þ b3Iu1 þ ~b3Ia1 ð6Þ

Eq (2) describes the rate at which susceptible individuals (S) become infected prior to exhib-

iting symptoms or testing positive, and are hence unaware they are infected. Parameter vr is

the rate of disease transmission. Since the testing is a random sample of the testable popula-

tion, a test has a probability Iu
1
=ðIu

1
þ SÞ of being administered to a unaware infected individ-

ual. Eq (3) describes the rate of change of unaware infected individuals Iu
1
, where the first term

on the right-hand side describes disease transmission and the second term accounts for indi-

viduals becoming aware of their infection through testing. Rate tr(t) models random sampling

of the testable population, which we assume is the sum of the susceptible population S and the

unaware infected population Iu
1
. Here f models the accuracy of the tests utilized, with f = 1 cor-

responding to a 100% accurate positive test. The third term on the right-hand side of (3)

describes how unaware infected individuals either recover (at rate β3) or become symptomatic

(at rate β1). Eq (4) describes the dynamics of aware asymptomatic individuals Ia
1
, where the

first term on the right-hand side accounts for positively tested asymptomatic individuals. The

second term accounts for an asymptomatic individual either becoming symptomatic (at rate

~b1) or recovered (at rate ~b3). Eq (5) describes the dynamics of symptomatic individuals I2.
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Here, the first two terms on the right-hand side account for individuals developing symptoms

from either being unaware (at rate β1) or aware (at rate ~b1) asymptomatic individuals. Note

that in our model, the asymptomatic compartment includes both individuals that will never

develop symptoms, as well as individuals that are currently asymptomatic but will later go on

to develop symptoms (often referred to as ‘pre-symptomatic’). The final term in this equation

describes the transition into a recovered state R, which occurs at rate β2. The final Eq (6) corre-

sponds to recovery from either asymptomatic or symptomatic states. All model variables and

parameters, along with the range of values used in this paper, are summarized in Table 1 and

are discussed more fully in Section 2.4.

Here, we are assuming that once individuals recover, they are “removed” from the system

such that they can no longer be infected again, although there is evidence that some individuals

can contract COVID-19 a second time (although typically at longer times after the first infec-

tion than those times investigated here) [33]. Current work is being completed to determine

how often reinfection does occur, and how long after infection can reinfection occur [33].

With the possibility of reinfection, and an ever increasing number of variants of COVID-19

including the more transmissible Delta and Omicron variants which are transmissible even to

vaccinated individuals [34], future work may lead to incorporating re-entry back into suscepti-

ble populations.

By the structure of system (2)–(6), it is clear that dynamics are positively invariant, and fur-

thermore, that the total population

NðtÞ≔ SðtÞ þ Iu
1
ðtÞ þ Ia

1
ðtÞ þ I2ðtÞ þ RðtÞ ð7Þ

is a conserved quantity, i.e. N(t)�N(0). Hence, for the remainder of this work, we normalize

all model variables with respect to the initial (and thus total) population such that

NðtÞ � 1: ð8Þ

This then implies that rate parameters should be interpreted with respect to population

fractions, as opposed to raw population numbers. For example, testing capacity Tr thus repre-

sents the proportion of the testable population that can be tested per day.

Table 1. Table of parameter descriptions and ranges of values used in the model. All parameters are assumed non-negative. S(0), Iu
1
ð0Þ, Ia

1
ð0Þ, I2(0), and R(0) define the

initial population sizes. Dashes are used when values are arbitrarily chosen from some range.

Parameter Description Range of Values References

Tr testing capacity [0, 1] (day−1) -

vr transmission rate [0, 1] (day−1) [35–41]

f fraction of true positives [0.815, 0.922] [42]

β1 Incubation rate (from unaware) [0.143, 0.224] (day−1) [43–45]

β2 Rate of recovery (from symptomatic) [0.05, 0.1] (day−1) [46]

β3 Rate of recovery (from unaware) [0.04, 0.07] (day−1) -

S(0) Initial fraction of susceptible individuals 1 − r, r = 0.01 -

Iu
1
ð0Þ Initial fraction of unaware individuals r, where r�1 -

Ia
1
ð0Þ Initial fraction of aware individuals 0 -

I2(0) Initial fraction of symptomatic individuals 0 -

R(0) Initial fraction of recovered individuals 0 -

https://doi.org/10.1371/journal.pone.0274407.t001
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2.3 Calculating the basic reproductive number R0

Two important components in understanding any disease are (1) to determine the mecha-

nisms by which a disease spreads through a population, and (2) to determine strategies that

increase the chances of stopping a disease outbreak. Mathematical epidemiologists work to

address these issues is various ways, one being to determine the stability of the models disease-

free equilibrium/equilibria (DFE), which can often be found by determining an expression for

the basic reproductive number R0, defined as the expected number of infected individuals that

results from a single infected individual being placed into a completely susceptible population

[30]. According to Diekmann et al. [31], the R0 can be calculated as the spectral radius of a

Next-Generation Matrix (NGM). The calculation of R0 from the NGM is standard, and we

refer the reader to [30, 31] for further details of the calculation. Here, we find R0 to be

R0 ¼
vrðS�Þ

2

trðtÞf þ S�ðb1 þ b3Þ
; ð9Þ

where S� corresponds to the models susceptible population at equilibrium. We observe that

larger disease transmission rates vr and lower testing capacity tr(t) result in higher values of R0,

such that a disease outbreak is more likely. In the Results Section we illustrate two possible out-

comes: R0 > 1 corresponding to disease persistence, and R0 < 1 corresponding to disease die

out.

2.4 Parameter estimation

Table 1 summarizes all variables and parameters for the model described in Eqs (2) through

(6). In particular we provide the meaning of each parameter, as well as providing a full descrip-

tion for how each model parameter was chosen (either from mathematical constraints, or

inferred from the literature). All parameter values were determined using data from the ances-

tral COVID-19 strain. However, as explained later in the Results Section, our model is robust

to changes in certain parameters, including the disease transmission rate vr (exceptions include

the disease incubation rate β1 and the recovery after symptoms rate β2, parameters that are rel-

atively easy to determine from clinical data). Since it can be difficult to determine the transmis-

sion rate of emerging COVID-19 variants, and even the original COVID-19 strain, our model

is easily extended to address questions about the spread of the newer variants, and will likely

show negligible difference in the optimal reopening strategies when compared to our results.

vr: Transmission rate. To calculate the transmission rate vr we use Eq 9. That is, for a cho-

sen R0 value and input values for S�, tr(t), f, β1, and β3, we calculate vr.
Tr: Testing capacity. The testing capacity corresponds to the proportion of the testable

population that can be tested (and returned) per day. Generally the tested population is the

constant Tr, unless in the rare case that the testable population becomes too small (see Eq 1).

Hence Tr 2 [0, 1]. Two types of tests are currently available: viral tests and antibody tests. A

viral test tells you if you have the infection, and an antibody test can tell you if you had the

infection. Here, we focus on the former. The two major types of viral tests, nucleic acid and

antigen tests, have different return times. Antigen tests (typically referred to as “rapid testing”)

are faster with a turnaround time of 15 minutes. Nucleic acid tests (PCR testing) may take

between 15 minutes to over 2 days [47]. For simplicity, we assume that all tests performed are

PCR tests which are returned within 24 hours.

f: Fraction of true positives. Parameter f represents the probability of testing positive,

given that the tested individual is infected. Molecular tests are more accurate than antigen

tests. Specifically, the sensitivity (fraction of true positives) of molecular tests using PCR is esti-

mated to be 87.8% (95% CI: 81.5% to 92.2%) [42] compared with antigen tests which have a
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mean sensitivity of 58% for asymptomatic people [48]. Consequently, we assume 0.815�

f� 0.922.

Transition rates βi (and ~βi). All transition rates βi and ~bi are interpreted as the expected

value of a Poisson process. Specifically, we can relate each βi to the expected transition time

htsi via

bi ¼
1

htsi
: ð10Þ

For example, the rate of developing symptoms β1 is the reciprocal of the time spent asymp-

tomatic (given that the individual did not test positive or recover).

β1 (and ~β1 ): Incubation rate. Incubation periods typically vary from one study to the

other, due to differences in study methods and populations. An early study of 425 confirmed

cases in the Hubei province in Wuhan found the mean incubation period to be 5.2 days with a

95% confidence interval of 4.1 to 7.0 days [43]. A recent meta analysis of reported incubation

period from January 2020 to May 2021 found the 95% confidence interval to be [5.70, 6.45]

[49]. Another meta analysis of 99 studies found the 95% confidence interval for the incubation

period to be [5.79, 6.97] [50]. All these intervals lie within range [4.1, 7.0] used in this study.

We estimate the incubation rate β1 to range from 0.143 to 0.224 (day−1). ~b1 corresponds to the

incubation rate after the individual has received a positive test, which may be faster than β1

depending on how much time the individual spends infected before receiving that positive test

result. We simplify the model by assuming this difference is negligible and set ~b1 ¼ b1.

β2: Recovery rate of symptomatic individuals. The Centers for Disease Control and Pre-

vention recommends ending isolation for people infected with mild cases of SARS-CoV-2

after at least 10 days since onset of symptoms and up to 20 days if the illness is severe [46].

Based on these numbers, we estimated the recovery time after symptom onset to range

between 10 and 20 days to cover both severe and mild illness. Our estimated recovery rate

from symptomatic state, β2 thus ranges from 0.05 − 0.1 day−1

β3 (and ~β3 ): Rate of recovery from asymptomatic individuals. To estimate the recovery

time from asymptomatic state we shifted the recovery time from symptomatic state forward by

the mean incubation period of 5.2 days. Thus, our estimated range for recovery rate from

asymptomatic state, β3 is 0.04 − 0.07 day−1. ~b3 is the rate of recovery from the aware asymp-

tomatic state. Following the same reasoning outlined above for ~b1, we set ~b3 ¼ b3.

2.5 Methods

We assume that our population represents a small residential college environment, where we

require the total infected population to remain below a fraction p of the total population, dur-

ing an academic semester. Furthermore, as administrators of such colleges only have informa-

tion about COVID aware (those whom tested positive) and symptomatic individuals, we work

to understand the dynamics of our model with respect to the following metric:

topen≔ supfT � 0 j ~pN � Ia
1
ðtÞ þ I2ðtÞ � pN; 8t 2 ½0;T�g: ð11Þ

The metric topen represents the total in-person time spent at an institution, where we assume

that after a closure (when a proportion p of the population becomes infected) the institution

will reopen when the remaining proportion of the population who is infected drops below ~p.

We assume that the institution will then move back to in-person status until the proportion of

infected individuals again reaches p, and another closure occurs.
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Note that we will assume that Ia
1
ð0Þ þ I2ð0Þ < pN, so that topen> 0. Furthermore, the supre-

mum in (11) is necessary (as opposed to a maximum), as disease/control parameters may be

such that Ia
1
ðtÞ þ I2ðtÞ � pN for all t� 0.

As noted in (8), without loss of generality we fix N = 1 in (11). Lastly, since Ia
1
ðtÞ þ I2ðtÞ �

pN for all times t 2 [0, T] if and only if

max
t2½0;T�
fIa

1
ðtÞ þ I2ðtÞg � pN;

For definiteness, we fix

p ¼ 0:05: ð12Þ

This value of p is based on protocols utilized at different institutions throughout the USA,

and in particular those used in New York state in Spring and Fall 2020 semesters [51]. Further,

we define

0 < ~p < 0:05: ð13Þ

In recent semesters, the original SARS-CoV-2 strain has evolved into multiple variants of

concern, including the Delta and Omicron variants [12]. Even those individuals that have been

fully vaccinated (and boosted) have been able to contract and transmit the virus [52]. As such,

institutions must consider new strategies that can provide students with an optimal face to

face experience, all while keeping them safe. Thus, understanding and maximizing the in-per-

son time topen with respect to ~p (the proportion of the population infected at reopening) is

crucial.

We look at optimal reopening strategies for universities based on infection numbers, where

we look to optimize in-person class time with respect to varying infected population sizes, ~p of

the total population, at the time of reopening. We consider a closure to occur when the infec-

tion numbers reach 5% of the total population (i.e., when p = 0.05) and consider reopening

when the infection numbers drop to a proportion ~p of the entire population (here

0 < ~p < 0:05). Furthermore, if the percentage of the infected population reaches 5% again, we

consider another closure (and so on).

3 Results

Here we simulate our model given by Eqs (2) through (6) under a base case set of parameters

(found in Table 1) to highlight the dynamics of disease spread in two cases (i.e., disease die out

when R0 < 1 and disease spread when R0 > 1). Then, we illustrate how variations in the disease

transmission rate vr lead to different reopening strategies. As stated previously, a closure

occurs when the proportion of infected people reaches p = 0.05 and we explore the optimal

reopening strategies by examining the maximum number of in-person days topen as the pro-

portion of infecteds at reopening, ~p, is varied (between 0 and 0.05).

3.1 Baseline model dynamics: Disease outbreak vs disease die out

Fig 2 corresponds to the two disease progression possibilities based on the value of the basic

reproductive number R0 for two different pairs of parameters vr and Tr (transmission rate and

testing capacity) and for the baseline parameter set given in Table 2. That is, we illustrate dis-

ease die out when R0 < 1 (Fig 2(a)) and disease outbreak when R0 > 1 (Fig 2(b)).

In Fig 2(a) we see that the disease dies out quickly (shown by the small rise and fall of the

blue and red curves), and only a small proportion of the susceptible population becomes

infected (shown by the green curve). In Fig 2(b) we see that the disease persists for longer,
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Fig 2. Illustration of the progression of COVID-19 over a 100 day time period. (a) R0 < 1 indicates that the disease

dies out when vr = 0.5 and Tr = 0.4, and (b) R0 > 1 indicates local stability of the disease-free equilibria set when vr =

0.45 and Tr = 0.2. Here, a portion of individuals from the testable population (Sþ Iu
1
) are tested every day.

https://doi.org/10.1371/journal.pone.0274407.g002

Table 2. Base set of parameters and initial conditions for our model. We assume that 1% of the initial population is infected and are unaware of their infection.

Baseline Parameters and Initial Conditions

S(0) Iu
1
ð0Þ Ia

1
ð0Þ I2(0) R(0) f β1 (t -1) β2 (t -1) β3 (t -1) ~β1 (t -1) ~β3 (t -1)

0.99 0.01 0 0 0 0.85 0.143 0.06 0.05 0.143 0.05

https://doi.org/10.1371/journal.pone.0274407.t002
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shown by the large peak in symptomatic infecteds (shown by the red curve). Here, approxi-

mately 60% of the susceptible population becomes infected (shown by the green curve), before

eventually recovering (shown by the black curve).

It should be noted that our model performed similarly in the case where we considered

imperfect quarantine. That is, when we incorporated a term in our model to account for a

small number of symptomatic individuals transmitting the disease to susceptible individuals,

we recovered model dynamics very similar to our baseline dynamics described in Fig 2 (results

not shown). As we assume that individuals follow strict quarantine in our modeling frame-

work, we expect imperfect quarantine to be negligible here.

3.2 Reopening strategies for variations in the disease transmission rate vr
One valuable result of our model is that the reopening strategies are robust to variations in the

transmission rate vr when vr is large in value and the testing capacity Tr is fixed. The transmis-

sion rate can vary widely depending on variant of the virus and is likely the parameter that is

most difficult to calculate. In fact, our model is robust to all model parameters except β1 (the

incubation rate)and β2 (the rate of recovery), both of which are quite straightforward to calcu-

late. Here, robustness to our choice of most model parameters means that, for a given testing

strategy Tr, the optimal reopening strategies remain similar. In order to show the robustness of

our model to all parameters, we plot histograms that bin the number of occurrences of the

optimal ~p values that fall within 5% of the maxima for topen. In what follows we highlight the

robustness of the transmission rate vr parameter choice and include a description of robustness

for all other model parameters in S1 File.

Figs 3–5 illustrate the optimal number of in-person days topen for varying ~p (the proportion

of infecteds at reopening) for a fixed testing strategy (Tr = 0.1) and different ranges of the

transmission rate vr. Fig 3 corresponds to a full range of transmission rates (vr low to high), Fig

4 corresponds to a high range of transmission rates, and Fig 5 corresponds to a low range of

transmission rates.

Fig 3 illustrates results for low and high transition rates vr (values between 0.3 and 2), where

Fig 3(a) shows 3 peaks for topen as we vary ~p from 0 to 0.035 (there are no additional peaks after

0.035—results not shown). To determine whether these ~p values indeed result in peaks (i.e.,

optimal topen) we plot a histogram in Fig 3(b) that bins the number of occurrences of the opti-

mal ~p values that fall within 5% of the maxima for topen. Although we do see peaks in ~p, there is

a spread in ~p values, and the distinction between peaks/optimal values of topen is greater for

larger vr and smaller for vr small. To illustrate this, we separate the results in terms of low val-

ues of vr and high values of vr.
Fig 4(a) illustrates that for high vr (values between 1 and 2) there are 3 distinct peaks for

topen that are considerably higher than their corresponding minima as we vary ~p from 0 to

0.035 (there are no additional peaks after 0.035—results not shown). To determine whether

these values are indeed peaks, we again plot a histogram that bins the number of occurrences

of the optimal ~p values that fall within 5% of topen. In Fig 4(b) we see 3 distinct peaks for vary-

ing ~p, corresponding to the optimal topen.

Fig 5(a) shows that for low ranges of vr (values between 0.3 and 0.6), no clear peaks amongst

the vr values exist as we vary ~p. Furthermore, Fig 5(b) illustrates that the histogram that bins

the number of occurrences of the optimal ~p values shows no clear distinctions between the ~p
values. This result suggests that for low enough vr values, variations in the opening strategy,

dictated by the choice in ~p, does not result in significant differences. Therefore, we conclude

that for high vr values there are 3 distinct optimal strategies and that for low vr values different

reopening strategies do not result in significant differences. We note that situations in which
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the disease transmission vr is low do not often cause significant shutdowns and as such are not

as crucial to study in terms of reopening strategies.

To better highlight the three optimal strategies described in Fig 4 (when vr is high) we set

the transmission rate vr = 1.1386 (corresponding to the red curve in Fig 4(a)) and plot the

curves for the percent infected population over time for each of the optimal reopening ~p values

Fig 3. Exploring reopening strategies for a wide range in disease transmission vr with testing capacity. Tr = 0.1: We

randomly choose vr from a wide range of values (0.3 to 2 which corresponds to R0 values between 1.1 and 7.1). (a) Plot

of in-person days topen for a varying reopening proportion of infecteds ~p. (b) Histogram plot of the ~p values that result

in a number of in-person days that are within 5% of the maximum (defined by the peaks in (a)). Here, 75 bins are used

and 1000 values of vr are uniformly chosen between 0.3 and 2.

https://doi.org/10.1371/journal.pone.0274407.g003
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Fig 4. Exploring reopening strategies for high disease transmission vr with testing capacity. Tr = 0.1: We randomly

choose vr from a range of values (1 to 2 which corresponds to R0 values between 3.6 and 7.1). (a) Plot of in-person days

topen for a varying reopening proportion of infecteds ~p. (b) Histogram plot of the ~p values that result in a number of in-

person days that are within 5% of the maximum (defined by the peaks in (a)). Here, 75 bins are used and 1000 values of

vr are uniformly chosen between 1 and 2.

https://doi.org/10.1371/journal.pone.0274407.g004
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Fig 5. Exploring reopening strategies for low disease transmission vr with testing capacity. Tr = 0.1: We randomly

choose vr from a range of values (0.3 to 0.6 which corresponds to R0 values between 1.1 and 2.1). (a) Plot of in-person

days topen for a varying reopening proportion of infecteds ~p. (b) Histogram plot of the ~p values that result in a number

of in-person days that are within 5% of the maximum (defined by the peaks in (a)). Here, 75 bins are used and 1000

values of vr are uniformly chosen between 0.3 and 0.6. Notice here that the peaks are not well defined in the sense that

each vr has different optimal topen.

https://doi.org/10.1371/journal.pone.0274407.g005
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in Fig 6. Here, the blue switch function corresponds to periods of time when things are open

such that the transmission rate vr = 1.1386 and when things are closed such that vr = 0. Also,

the black and green dotted lines correspond to the proportion of infecteds when a closure

occurs (p = 0.05) and the proportion of infecteds upon reopening (the optimal ~p), respectively.

Fig 6(a)–6(c), correspond to the first, second, and third optimal strategy illustrated by the

peaks in Fig 4(a) (red curve), respectively. In each case the maximum number of in-person

days topen is just over 20 days, where Fig 6(a) describes a single long closure after less than a

week open, followed by approximately two more in-person weeks at the semester’s end. Fig 6

(b) shows roughly 2 shorter closures after less than an initial week open. Here, we have two 10

day in-person periods in between those closures. Finally, Fig 6(c) shows 3 even shorter closures

after the first closure, where there are 2 week long (roughly) in-person time periods.

Fig 6. Optimal strategies for high vR = 1.1386 and TR = 0.1: (10% of population tested daily). The red curve corresponds to the infected population

over time, and the vr shifts from high to zero to signify open and closed periods, respectively (vr is the blue step function). Note that as soon as the red

curve reaches 5% (black dotted horizontal line), there is a closure and vr = 0. The population of infecteds continues to rise as there are infections still

working through the population, but eventually drops (staying below 10% in all cases). When infecteds drop to the indicated ~p (green dotted horizontal

line) there is a reopening and vr = 1.1386 again. The process repeats over a time span of T = 100 days. (a) ~p ¼ 0:002. (b) ~p ¼ 0:02. (c) ~p ¼ 0:031. (d)
~p ¼ 0:015.

https://doi.org/10.1371/journal.pone.0274407.g006
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To illustrate a bad strategy, we also plot results corresponding to a minimum of in-person

days topen with ~p = 0.015 in Fig 6(d). This minimum is shown in Fig 4(a) (first minimum after

the first maximum along purple curve). Here we see two extended closures after the initial clo-

sure, with a single in-person time period of 10 days. In total there are under 15 days of in-per-

son time as opposed to the optimal (more than) 20 in-person days that we have for the 3

optimal strategies.

3.3 Reopening strategies for high testing capacity Tr

Finally, we test how our optimal reopening strategies change if we increase our testing capacity

Tr, where all previous work in this section has fixed Tr = 0.1. By increasing Tr, we see that lon-

ger in-person time periods exist, as expected. Fig 7 illustrates results for low and high transi-

tion rates vr (values between 0.3 and 2), where Fig 7(a) shows a large variation is opening

strategies as we vary vr from low to high (i.e., distinct peaks are not obvious). In addition, we

see that for vr low enough, no closures exists such that topen = 100 days (shown by purple

curve). Fig 7(b) shows the histogram plot of the ~p values that result in a number of in-person

days that are within 5% of the maxima, highlighting that no distinct strategies exist when

examining low to high vr together. As in the case when Tr was low, vr is robust to changes in ~p
only when it is high (vr in range 1 to 2). Fig 8(a) and 8(b) illustrate that two peaks exist when ~p
is low (~p < 0:015), and that there are no clearly defined reopening strategies when ~p is higher

(peaks are less well defined).

We compare our previous testing strategies for Tr = 0.1 using the same model parameters

given in Table 1, changing Tr = 0.75 and examining the reopening strategies when vr = 1.2

(optimal strategies highlighted by peaks in the yellow curve in Fig 8). We illustrate the different

reopening strategies that allow for the longest in-person time, topen, in Fig 9(a) and 9(b) which

correspond to the first and second optimal strategy when ~p < 0:015 illustrated by the first 2

peaks in Fig 8(a) and 8(b) (yellow curve for vr = 1.2). In addition we choose an additional

Fig 7. Exploring reopening strategies for a wide range in disease transmission vr with high testing capacity Tr = 0.75: We randomly choose vr from

a range of values (0.3 to 2) which corresponds to R0 values between 1.1 and 7.1). (a) Plot of in-person days topen for a varying reopening proportion

of infecteds ~p. (b) Histogram plot of the ~p values that result in a number of in-person days that are within 5% of the maximum (defined by the peaks in

(a)). Here, 75 bins are used and 1000 values of vr are uniformly chosen between 0.3 and 2. Notice here that the peaks are not well defined in the sense

that each vr has different optimal topen.

https://doi.org/10.1371/journal.pone.0274407.g007
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strategy for ~p > 0:015 in Figure (c). The maximum in-person time remains between 30 and 35

days. In Fig 9(a) we see an extended break after the first shut down followed by a single lengthy

in-person end of semester. In Fig 9(b) we have two shorter closures after the first shut down,

each followed by two in-person sessions, and in Fig 9(c) we see three short shut downs

(between 10 and 14 days), followed by 3 in-person sessions (all greater than 10 days).

4 Conclusions and discussion

Here we developed and analysed a model of COVID spread in a closed environment (like a

residential-campus university) that takes into account weekly testing as well as reopening strat-

egies. The overall goal of the study was to optimize the number of in-person days (versus vir-

tual) for varying reopening strategies. We explored the possibility of reopening after closing

when a proportion p = 0.05 of the population becomes infected, where reopening is based on

the proportion ~p of people still infected (~p < p). With variants of the disease emerging rapidly,

and with individuals still contracting and transmitting the virus when vaccinated, it is likely

that the disease will persist into the foreseeable future. Thus, models for understanding how

we can continue to live and work, all while controlling disease spread, are crucial.

We first examined optimal reopening strategies with the testing ]colorred capacity fixed at

Tr = 0.1. We made the observation that if vr was high, a distinct set of 3 optimal strategies

emerged, all of which allowed institutions to remain open for an optimal in-person experience

of over 20 days. The first of the strategies involved a short opening, followed by a long closure,

and then finally a long in-person session near the end of the semester (the semester length was

fixed at T = 100 days). The second and third strategies were similar and corresponded to a

shorter closure after the initial openings, followed by two moderate length in-person sessions

(with closures). We suggest that the first strategy would be useful for universities in the sense

that students often live far from home, and are unlikely able to return more than once after a

Fig 8. Exploring reopening strategies for a high range in disease transmission vr with high testing capacity. Tr = 0.75: We randomly choose vr from

a range of values (1 to 2) which corresponds to R0 values between 3.6 and 7.1). (a) Plot of in-person days topen for a varying reopening proportion of

infecteds ~p. (b) Histogram plot of the ~p values that result in a number of in-person days that are within 5% of the maximum (defined by the peaks in

(a)). Here, Here, 75 bins are used and 1000 values of vr are uniformly chosen between 1 and 2. Notice here that the peaks are well defined in the sense

that each vr has similar optimal topen.

https://doi.org/10.1371/journal.pone.0274407.g008
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closure (expensive in terms of time and money). However the second and third strategies

might be useful for k-12 schools, in the sense that students typically live close to their schools

and having weeks off followed by weeks on would allow a balance of in-person time that is

important for parents, teachers, and students.

For low Tr and low vr, we noticed that distinct optimal peaks did not exist. Rather, the

curves for topen had different peaks for varying vr, and hence different reopening strategies. It

should be noted that for vr low enough (vr< 0.3), the optimal in-person days always exceeds

70 days, and hence choosing any optimal strategy for these lower transmission rates will give

you an excellent in-person experience (in terms of time spent in class).

We also explored increasing the testing capacity to a high value of Tr = 0.75. Here, we saw

that the optimal number of in-person days increased to over 30 days, where two optimal

Fig 9. Optimal strategies for high vR = 1.1386 and high TR = 0.75: (75% of population tested daily). The red curve corresponds to the infected

population over time, and the vr shifts from high to zero to signify open and closed time periods, respectively (vr is the blue step function). Note that as

soon as the red curve reaches 5% (black dotted horizontal line), there is a closure and vr = 0. The population of infecteds only rise slightly above 5% (in

all cases) and eventually drop. When infecteds drop to the indicated ~p (green dotted horizontal line) there is a reopening and vr = 1.1386 again. The

process repeats over a time span of T = 100 days. (a) ~p ¼ 0:001. (b) ~p ¼ 0:01. (c) ~p ¼ 0:025.

https://doi.org/10.1371/journal.pone.0274407.g009
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strategies exist: one long closure followed by an extended open period, and an optimal strategy

such that there were two shorter closures followed by two open periods. As in the first case

when Tr is low, the first strategy might be better for universities, where the second could be

more useful in a k-12 environment. We also note that for moderate values of vr (vr< 0.7) there

are no closures such that the in-person experience is always 100 days.

A potential limitation of our modeling framework is that we did not explicitly take vaccina-

tion into account, as we assume all individuals in the system have the same vaccination status,

a strategy taken by many US residential universities that require proof of vaccination upon

arrival. However, in future work, the incorporation of differently susceptible individuals (e.g.,

vaccinated, unvaccinated, or boosted) into our model could be important, allowing an individ-

ual to go from susceptible to recovered without ever becoming sick or infecting others. In

addition, this model extension could be used to address questions surrounding waning immu-

nity, such that a vaccinated person can contract COVID again. This model addition could be

particularly important when considering disease dynamics over longer time frames (longer

than our 100 days, a typical semester length). To test whether we could ignore waning immu-

nity in our model, we ran a simulation where we allowed a small proportion of recovered indi-

viduals to become susceptible again (at rate γ). Setting γ = 1/90 (from the range 1/90—1/30

days−1) had little effect on the overall dynamics in terms of the total number of infecteds at 100

days (results not shown). However, if the time frame is greater than 100 days, the infected

numbers do increase, highlighting the potential importance of waning immunity over longer

time periods.

In terms of robustness, our model suggests similar reopening strategies for a fixed testing

capacity Tr regardless of the transmission rate vr (when transmission is high). In fact, our

model is robust to all model parameters, except β1 (the incubation rate) and β2 (the rate of

recovery). The fact that our model is robust to vr is very valuable, since throughout the pan-

demic, it has been quite difficult to accurately estimate disease transmission rate as it varies

widely between variants and global location. This fact alone made it extremely difficult, espe-

cially at the start of the pandemic, to know when it was safe to reopen universities, businesses,

etc. Our model provides a mechanism by which organizations can make more informed

choices on reopening strategies, based on the knowledge of the incubation and recovery rates

and their preferred testing strategy alone.

Supporting information

S1 File. Contains all the supporting tables and figures.

(PDF)

Author Contributions

Conceptualization: Mackenzie Dalton, Paul Dougall, Frederick Laud Amoah Darko, William

Annan, Emmanuel Asante-Asamani, Susan Bailey, James Greene, Diana White.

Data curation: Mackenzie Dalton, Paul Dougall, Frederick Laud Amoah Darko, William

Annan, Emmanuel Asante-Asamani, Susan Bailey, James Greene, Diana White.

Formal analysis: Mackenzie Dalton, James Greene, Diana White.

Investigation: Mackenzie Dalton, Emmanuel Asante-Asamani, Susan Bailey, James Greene,

Diana White.

Methodology: Mackenzie Dalton, Paul Dougall, Frederick Laud Amoah Darko, William

Annan, Emmanuel Asante-Asamani, Susan Bailey, James Greene, Diana White.

PLOS ONE Modeling optimal reopening strategies for COVID-19 and its variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0274407 November 9, 2022 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274407.s001
https://doi.org/10.1371/journal.pone.0274407


Project administration: Diana White.

Resources: Diana White.

Supervision: Diana White.

Visualization: Mackenzie Dalton, James Greene, Diana White.

Writing – original draft: Mackenzie Dalton, Paul Dougall, Frederick Laud Amoah Darko,

William Annan, Emmanuel Asante-Asamani, Susan Bailey, James Greene, Diana White.

Writing – review & editing: Mackenzie Dalton, James Greene, Diana White.

References
1. Boni MF, Lemey P, Jiang Xea. Evolutionary Origins of the SARS-CoV-2 Sarbecovirus Lineage Respon-

sible for the COVID-19 Pandemic. Nature Microbiology. 2020; 5:1408–1417. https://doi.org/10.1038/

s41564-020-0771-4 PMID: 32724171

2. Muralidar S, Ambi SV, Sekaran S, Krishnan UM. The emergence of COVID-19 as a global pandemic:

Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2.

Biochimie. 2020; 179:85–100. https://doi.org/10.1016/j.biochi.2020.09.018 PMID: 32971147

3. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2.

Nature Medicine. 2020; 26(4):450–452. https://doi.org/10.1038/s41591-020-0820-9 PMID: 32284615

4. Ghebreyesus TA. WHO Director-General’s opening remarks at the media briefing on COVID-19;. Avail-

able from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-

remarks-at-the-media-briefing-on-covid-19—11-march-2020.

5. Organization GWH. WHO COVID-19 Dashboard; 2022. Available from: https://covid19.who.int/.

6. Global excess deaths associated with covid-19, January 2020—December 2021;. Available from:

https://www.who.int/data/stories/global-excess-deaths-associated-with-covid-19-january-2020-

december-2021.

7. Rahman HS, Aziz MS, Hussein RH, Othman HH, Omer SHS, Khalid ES, et al. The Transmission

Modes and Sources of COVID-19: A Systematic Review. International Journal of Surgery Open. 2020;

26:125–136. https://doi.org/10.1016/j.ijso.2020.08.017 PMID: 34568614

8. Qian M, Jiang J. COVID-19 and social distancing. Journal of Public Health. 2020; p. 1–3. https://doi.org/

10.1007/s10389-020-01321-z PMID: 32837835

9. Brooks JT, Butler JC. Effectiveness of Mask Wearing to Control Community Spread of SARS-CoV-2.

JAMA. 2021; 325(10):998–999. https://doi.org/10.1001/jama.2021.1505 PMID: 33566056

10. Vandenberg O, Martiny D, Rochas O, Belkum Av, Kozlakidis Z. Considerations for diagnostic COVID-

19 tests. Nature Reviews Microbiology. 2021; 19(3):171–183. https://doi.org/10.1038/s41579-020-

00461-z PMID: 33057203

11. Commissioner Oot. Coronavirus (COVID-19) Update: FDA Authorizes First Oral Antiviral for Treatment

of COVID-19; 2021. Available from: https://www.fda.gov/news-events/press-announcements/

coronavirus-covid-19-update-fda-authorizes-first-oral-antiviral-treatment-covid-19.

12. Kimball S. The omicron subvariant is more contagious, but vaccinated people are less likely to spread it,

study finds; 2022. Available from: https://www.cnbc.com/2022/01/31/the-new-omicron-subvariant-is-

more-contagious-but-vaccinated-people-are-less-likely-to-spread-it-study-finds.html.

13. CDC. Coronavirus Disease 2019 (COVID-19); 2020. Available from: https://www.cdc.gov/coronavirus/

2019-ncov/science/science-briefs/fully-vaccinated-people.html.

14. Hadi MA, Ali HI. Control of COVID-19 System using A Novel Nonlinear Robust Control Algorithm. Bio-

medical Signal Processing and Control. 2020; p. 102317. https://doi.org/10.1016/j.bspc.2020.102317.

PMID: 33173541

15. Aronna MS, Guglielmi R, Moschen LM. A model for COVID-19 with isolation, quarantine and testing as

control measures; 2020.

16. Pazos FA, Felicioni F. A control approach to the Covid-19 disease using a SEIHRD dynamical model.

medRxiv. 2020.

17. Yuan P, Aruffo E, Li Q, Li J, Tan Y, Zheng T, et al. Evaluating the risk of reopening the border: a case

study of Ontario (Canada) to New York (USA) using mathematical modeling. In: Mathematics of Public

Health. Springer; 2022. p. 287–301.

PLOS ONE Modeling optimal reopening strategies for COVID-19 and its variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0274407 November 9, 2022 20 / 22

https://doi.org/10.1038/s41564-020-0771-4
https://doi.org/10.1038/s41564-020-0771-4
http://www.ncbi.nlm.nih.gov/pubmed/32724171
https://doi.org/10.1016/j.biochi.2020.09.018
http://www.ncbi.nlm.nih.gov/pubmed/32971147
https://doi.org/10.1038/s41591-020-0820-9
http://www.ncbi.nlm.nih.gov/pubmed/32284615
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://covid19.who.int/
https://www.who.int/data/stories/global-excess-deaths-associated-with-covid-19-january-2020-december-2021
https://www.who.int/data/stories/global-excess-deaths-associated-with-covid-19-january-2020-december-2021
https://doi.org/10.1016/j.ijso.2020.08.017
http://www.ncbi.nlm.nih.gov/pubmed/34568614
https://doi.org/10.1007/s10389-020-01321-z
https://doi.org/10.1007/s10389-020-01321-z
http://www.ncbi.nlm.nih.gov/pubmed/32837835
https://doi.org/10.1001/jama.2021.1505
http://www.ncbi.nlm.nih.gov/pubmed/33566056
https://doi.org/10.1038/s41579-020-00461-z
https://doi.org/10.1038/s41579-020-00461-z
http://www.ncbi.nlm.nih.gov/pubmed/33057203
https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-oral-antiviral-treatment-covid-19
https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-oral-antiviral-treatment-covid-19
https://www.cnbc.com/2022/01/31/the-new-omicron-subvariant-is-more-contagious-but-vaccinated-people-are-less-likely-to-spread-it-study-finds.html
https://www.cnbc.com/2022/01/31/the-new-omicron-subvariant-is-more-contagious-but-vaccinated-people-are-less-likely-to-spread-it-study-finds.html
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html
https://doi.org/10.1016/j.bspc.2020.102317
http://www.ncbi.nlm.nih.gov/pubmed/33173541
https://doi.org/10.1371/journal.pone.0274407


18. Yuan P, Aruffo E, Gatov E, Tan Y, Li Q, Ogden N, et al. School and community reopening during the

COVID-19 pandemic: A mathematical modelling study. Royal Society Open Science. 2022; 9

(2):211883. https://doi.org/10.1098/rsos.211883 PMID: 35127115

19. Svoboda J, Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Infection dynamics of COVID-19 virus

under lockdown and reopening. Scientific reports. 2022; 12(1):1–11. https://doi.org/10.1038/s41598-

022-05333-5 PMID: 35087091
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